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We consider the evolution of packets of water waves that travel predominantly in one 
direction, but in which the wave amplitudes are modulated slowly in both horizontal 
directions. Two separate models are discussed, depending on whether or not the waves 
are long in comparison with the fluid depth. These models are two-dimensional 
generalizations of the Korteweg-de Vries equation (for long waves) and the cubic 
nonlinear Schrodinger equation (for short waves). In  either case, we find that the 
two-dimensional evolution of the wave packets depends fundamentally on the 
dimensionless surface tension and fluid depth. In particular, for the long waves, one- 
dimensional (KdV) solitons become unstable with respect to even longer transverse 
perturbations when the surface-tension parameter becomes large enough, i.e. in very 
thin sheets of water. Two-dimensional long waves (‘lumps ’) that decay algebraically 
in all horizontal directions and interact like solitons exist only when the one-dimen- 
sional solitons are found to be unstable. 

The most dramatic consequence of surface tension and depth, however, occurs for 
capillary-type waves in sufficiently deep water. Here a packet of waves that are 
everywhere small (but not infinitesimal) and modulated in both horizontal dimensions 
can ‘focus’ in a finite time, producing a region in which the wave amplitudes are 
finite. This nonlinear instability should be stronger and more apparent than the 
linear instabilities examined to date; it should be readily observable. 

Another feature of the evolution of short wave packets in two dimensions is that 
all one-dimensional solitons are unstable with respect to long transverse perturbations. 
Finally, we identify some exact similarity solutions to the evolution equktions. 

1. Introduction 
Our understanding of the evolution of surface water waves of moderate amplitude 

has increased significantly within the last decade or so. The evolution in one spatial 
dimension of a packet of inviscid waves of sufficiently small amplitude is governed 
by linear equations on a short time scale, and by either the Korteweg-de Vries (KdV) 
equation 

Ut 4- uu, i- u,,, = 0 (1.1) 
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or the cubic nonlinear Schrodinger equation 
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iAt+A,+alA[2A = 0 (1.2) 

on longer time scales, depending on whether or not the typical wavelengths are large 
in comparison with the fluid depth. In (1.2) and throughout this paper, IT = 1, and 
represents an irreducible choice of signs. Both of these equations can be solved exactly 
as initial value problems, using inverse scattering transforms (IST; an account of 
IST can be found in Ablowitz et al. 1978). In  situations in which viscous effects are felt 
on an even longer time scale, these theories (or viscously corrected versions of them) 
predict with very reasonable accuracy the evolution of waves over quite long distances 
in wave tanks (Hammack & Segur 1974,1978; Yuen & Lake 1975). 

Outside of specially designed tanks, surface waves ordinarily evolve in two spatial 
dimensions and here the theory is much less complete. A two-dimensional generaliza- 
tion of (1.1) for nearly one-dimensional long waves was given by Kadomtsev & 
Petviashvili (1970) in the form: 

ut + uu, + au,,, UYV 0% = 0. (1.3) -Iz* 
Results by several authors indicate that (1.3) is of IST-type, but a complete method of 
inverse scattering, analogous to that in one spatial dimension, has not yet been 
developed. 

Two-dimensional generalizations of (1.2) were derived by Zaharov (1968), Benney 
& Roskes (1969), Davey & Stewartson (1974), and Djordjevic & Redekopp (1977). 
All of these analyses followed approximately the same lines. The problem was also 
studied by Hayes (1973), using somewhat different methods. The most general analysis 
was by Djordjevic & Redekopp, who included the effects of gravity, surface tension 
and arbitrary depth to get a system that can be reduced to 

(1.4) I iA, + u1 A,. + A,, = IT2 I A 12A + @, A ,  

a@)xz+@yy = - b ( l - 4 z ) . c ,  

where (a, b, ul, g2) depend on the (dimensionless) fluid depth and surface tension. In  
the long wave limit (1.4) reduces to one of the problems that Ablowitz & Haberman 
(1975) had shown were of IST-type. As with (1.3), beyond identifying the appropriate 
linear scattering problem and obtaining special solutions, no general inverse scattering 
theory has yet been developed. 

In these two cases, (1.3) and the long wave limit of (1  .a), one can reasonably anticipate 
that the necessary inverse scattering theory eventually will be developed, and that the 
general solutions of (1.3) and (1.4), as initial value problems, will become available. 
In  these cases, the two-dimensional problem should eventually be solved to the extent 
that the one-dimensional problem is now. However, as discussed in $5,  we conjecture 
that (1.4) cannot be solved by inverse scattering transforms over the entire range of 
parameters and that the general two-dimensional problem cannot be solved in a 
manner analogous to that in one dimension. 

The purpose of this paper is to identify some important results regarding (1.3) and 
( 1 4 ,  and to suggest the role that they play in the solution of initial value problems. 
A major result of this study is the dramatic effect that surface tension can have upon 
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the dynamics of the wave motion. A summary of these results, and an outline of the 
paper is as follows. 

The derivations of (1.3) and (1.4) from the physical problem of water waves are 
discussed in $2.  These equations are well established in the literature, but the question 
of what boundary conditions and other constraints are required to make the problems 
well posed is still open. We show that the original problem selects cer ain side con- 
ditions as ‘natural ’. Which conditions are appropriate depends on the dimensionless 
surface tension and depth. In  this section we also consider the physical interpretation 
of an infinite set of conservation laws. 

The role that one-dimensional soliton solutions can play in the two-dimensional 
problems is examined in 9 3 (i.e. stability of solitons). KdV solitons are unstable in 
(1.3) when CT = - 1, which occurs in sufficiently thin sheets of water (i.e. large enough 
surface-tension coefficient). For zero surface tension CT = + 1, and the argument does 
not yield instability. When solitons are unstable, they cannot be viewed as the asymp- 
totic ( t  --f 00) states towards which the solution evolves, as they are in the one-dimen- 
sional problem. In this case, ‘lump’ solutions exist and may play an asymptotic role 
analogous to that of one-dimensional solitons. 

Zakharov & Rubenchik (1974) showed that for the one-dimensional cubic nonlinear 
Schrodinger equation all one-dimensional solitons are unstable. These results apply to 
the deep water limit of ( 1  .a). We extend their analysis to demonstrate the equivalent 
results in the case of finite depth. 

The most dramatic effect of strong surface tension is focusing (0 4).  A wave that is 
large enough (in a certain integral sense) focuses at a particular point in space after a 
finite time. Here there is no asymptotic (t+co) state, because the solution of (1.4) 
develops a singularity in a finite time. Focusing provides a mechanism by which 
a field of relatively small amplitude waves produces a local region in which the 
amplitudes are large. Focusing is a potentially important mechanism in the redistri- 
bution of energy within the spectrum; it should be readily measurable. 

We consider the question of the complete integrability of (1.4) in $ 5. Moreover, 
we exhibit some special solutions that are not one-dimensional, and are candidates for 
asymptotic states in the two-dimensional problem. 

2. Relevant evolution equations 
The classical problem of water waves is to find the irrotational motion of an inviscid, 

incompressible, homogeneous fluid, subject to the forces of gravity and surface 
tension. The fluid rests on a horizontal and impermeable bed of Infinite extent at  
z = - h (h may be finite or infinite), and has a free surface at z = C(x, y, t ) .  

The fluid has a velocity potential, $, which satisfies 

V2$ = 0, - h < 2 < [(x, y, t ) .  (2.1) 

$2 = 0; (2.2) 

It is subject to boundary conditions on the bottom, z = - h: 

and along the free surface, z = [: 
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Here g is the gravitational acceleration, and T is the ratio of surface-tension coefficient 
to fluid density. We note that the linearized dispersion relation for this system is 

02 = (glc + lc3T) tanh lch. 
In  two dimensions, one should interpret K = (k2+12)i in (2.4). 

2.1. KdV limit 

The solution of (1.3) provides an approximate solution to these equations that is valid 
when the initial disturbance consists primarily of nearly one-dimensional long waves 
of small amplitude. To be precise, let K = (k, I )  be the horizontal wavenumber char- 
acteristic of the disturbance. Orient the horizontal co-ordinate system such that the 
x direction is the principal direction of wave propagation. Let a denote the char- 
acteristic amplitude of the disturbance. Then we need: 

(i) small amplitudes, e r a / h <  1; ( 2 . 5 ~ )  

(ii) long waves, ( K h ) 2  < 1 ;  (2.5b) 

(iii ) nearly one -dimensional waves, 
(Z / lc )2  < 1. ( 2 . 5 ~ )  

The KdV equation (1 .1)  results when the first two effects balance in truly one- 
dimensional problems, and (1.3) results when all three effects balance: 

( K h ) 2  = o ( S ) ;  (2.5d) 

(Z/K)2 = O(a) .  (2.5e) 

Under the assumptions of (2.5) a first approximation of (2.1)-(2.3) reduces to 

Thus, to lowest order, the solution of (2.1)-(2.3) may be approximated by 

6 W J X -  (gh)%l+f2Cx+ ( g h ) h l ) ,  (2.7) 

where f, and f2 are known in terms of the initial data. Throughout this paper, we are 
interested in problems where the initial disturbances are localized, and it is then 
convenient to assume a fortiori that the physical quantities have compact support 
initially. In this case, it is easy to show that fi and fi in (2.7) have compact support 
as well. 

To go to higher order, we define scaled, dimensionless variables: 

(2.8) 

( 2 . 9 ~ )  

Now we look for solutions of the form 6 N Eh[u(r, 7 , ~ )  + V ( S ,  7, q)]; i.e. we use the method 
of multiple scales. To eliminate secular terms at the next order, we find 

1 
T = &[x - (gh))  t ] / h ,  

T = €Y/h, 

s = d [ x  + (gh)t t ] /h ;  

7 = s (gh) t t /h ;  
u =f1, v = f2; 

9 = T/gh2 .  

(224, + 3uup + (g - P) u,,), + uqr = 0 

and (2.9b) 

The equation given by Kadomtsev & Petviashvili (1970) is in this form. 



On the evolution of packets of water waves 695 

For most circumstances of interest in water waves, 

&-P > 0, (2.10) 

and it follows from (2.4) that the linearized phase speed is a (local) maximum a t  K = 0. 
Thus, the waves governed by (2.9) travel faster than their neighbours (in K space) and 
there should be no disturbance as r++o3, or s+--co. Consequently, ( 2 . 9 ~ )  may be 
integrated to 

(2.11) 2u, + 3uur -!- (4 - 9) u, -Jra uvv !I% = 0, 

with a similar equation for (2.9b). This is now in the form of an evolution equation for 
u, as in (1.3). For very thin sheets of water (i.e. large enough) (2.10) is false, the long 
waves travel slower than their neighbours, and the integral in (2.11) should be over 
( - a, r ) .  

Given (2. lo), there is no apparent difficulty in requiring that u should vanish, along 
with its derivatives, as r -+ + a. However, even if u and all of its derivatives vanish 
initially as r + - 00: it  is evident from (2.11) that u will not remain zero there unless 

u,,,,dr = 0. (2.12) 

Since u is the derivative of a velocity potential, (2.12) is automatically satisfied at the 
initial instant. Indeed, for the linearized form of (2.11), (2.12) is a constant of the 
motion, and it is sufficient to know it initially. 

The constraint in (2.12) has a simple physical interpretation. One can identify 
/ u ( r ,  7, r )  dr as the total mass of the wave in a thin strip at 7. Then (2.12) assures that 
the transverse derivative of mass is constant, and this prevents a net flow of mass to 
(or from) any particular strip. 

There are several indications that (2.11), or (1.3), is of IST-type. Dryuma (1974) 
has identified an appropriate linear scattering problem for (1.3); Zakharov & Shabat 
(1974) have related special solutions to a linear integral equation; Chen (1975) found 
a Backlund transformation; Satsuma (1976) has obtained ‘ N  soliton’, but non- 
localized, solutions by direct methods. In  $ 3  we discuss localized lump solutions. 
However, as mentioned earlier, no complete IST method has been developed for (1.3) 
to date. 

2.2. The nonlinear flchrodinger limit 

Let us now consider the derivation of (1.4) from (2.1)-(2.3). Here we are following a 
packet of nearly one-dimensional waves, travelling in the x direction, with an identi- 
fiable (mean) wavenumber, K = (k ,  I ) .  We denote the maximum variation in k within 
the packet by Sk. To derive (1.4) we need: 

(i) small amplitudes, € = K a < l ;  (2.13 a) 

(ii) slowly varying modulations, 8k/K < 1 ; (2.13 b )  

(iii) nearly one-dimensional waves, 1 E l  / K  + 1 ; (2.13 c) 

(iv) a balance of all three effects, 8k/K = O(s),  (2.13 d )  

I l l / .  = O(€) .  (2.13 e )  
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The dimensionless depth, kh, can be finite or infinite, but to avoid the shallow water 

(kh)2 B E .  (2.14) 
limit (and KdV), we need 

In this limit, the solution of the lowest order (linear) problem is 

[A exp (ie) + *I + const. 
cash k(z + h) ’ ‘( coshkh 

where x denotes the complex conjugate, 

0 = kx - o(k)  t ,  

(2 .15~)  

(2.15b) 

and w(k) is given by (2.4). To go to higher order, we introduce slow (dimensional) 
variables (again, using the method of multiple scales), 

x1 = EX, y1 = Ey, t, = E t ,  t, = €2t, 
and expand $ and 6: 

(2.16) 

yl, t,, t2) exp (W + *I 
(2.17) 

cosh k(z + h) ’ N 8 ( 6(z1,y ” t ” t ) 
+ coshkh 

c = E{Cllexp (ie+*}+ o(e2), - - iw A. 
-g+k2T 

In order to derive (1.4), these expansions must be carried out to O(e3).  The variations 
allowed in A reflect the fact that this is a wave packet, rather than a uniform wave- 
train, and 6 provides a mean motion generated by the packet. In  what follows we shall 
only discuss the secular effects that the higher order terms have on 6, and A; details 
can be found in Benney & Roskes (1969), Davey & Stewartson (1974) and Djordjevic 
& Redekopp (1977). 

At the next order of approximation, a secular condition requires that the wave 
packet travel with its linear group velocity, 

(2.18) aA/atl + Cg( k) aA/ax, = 0, 

where Cg = d w / d ~ .  On this same time scale, 6 satisfies a forced wave equation, 

(2.19) 

where p1 = 2sech2kh+2 / (1+P) ,  

P = k2T/g = (kh)2P. 

The solution of (2.19) changes dramatically, depending on whether or not 

gh > Ci. (2.20) 

If the ratio Cg/(gh)t is interpreted as the ‘Mach number’ of the wave packet, then 
(2.20) is the condition for ‘subsonic’ flow. In  this case, if has compact support, then 
6 has a forced component that travels with speed C, [i.e. it  satisfies (2.18)], and a free 
component that radiates outward with speed (gh)a, and is O(ti4) as t ,  + co. Hence with 
(2.20), astl-+w, we find that 6 satisfies both (2.18) and 

(2.21) 
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with the boundary condition that 6 vanishes as (x; + y:) + co. These are the boundary 
conditions prescribed by Davey & Stewartson (1974), and they are correct without 
surface tension. 

If the effects of surface tension are strong enough, (2.20) fails and the flow is 'super- 
sonic'. Now even if A has compact support, 6 and its derivatives are non-zero along 
'Mach lines' that emanate from the support of A. In  the limit f,+co, 6 satisfies both 
(2.18) and (2.21) as before. However, the appropriate boundary conditions for (2.21) 
now are that 6 and its derivatives vanish ahead of the support of A (e.g. as x1 + co), 
and no conditions as x,+-co. Hence, in general, we cannot expect that global 
integrals involving 6 will converge. 

The limit t ,  + co is of interest because (1.4) appears when one eliminates secular 
terms on the next time scale, t = O ( @ ) .  Carrying this out, and putting the result in 
dimensionless form, we define 

a 2 )  (9 - a 2 )  + P ( 2  - a 2 )  (7 - a 2 )  

a 2  - P( 3 - a 2 )  

+ 8a2- 2(1- g 2 ) 2  (I + P )  -- :$I, 
x1 = l + K C " ( l - ( T 2 ) ( 1 + P )  2 0, 

2w 

(2.22) 

(2.23) 

(2.24a) 

(2.24 b )  

(2.24 c )  

(2.24 d )  

(2.24 e )  

(2.24.f 1 

(2.249) 

(2.24 h) 

In  the above formulae, all functions are evaluated a t  b = 0, since we are considering 
our underlying wavetrain to be propagating purely in the x direction. It should be 
noted that (2.23) can be easily scaled to (1.4) where ( T ~  = sgn A, ( T ~  = sgn x, a = ap/h2 
and b = ppXl/h21XI in (1.4). 

Equations (2.23)-(2.24) are equivalent to those of Djordjevic & Redekopp [1977, 
their equations (2.12)-(2.13)] except for the correction of a misprint. If the initial 
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FIGURE 

4 

(Y > 0. I' < o  i.i/ a< 0. I' > 0 

3 F 

0 . 3  0.5 0.75 J .o 1 .?5 1 .s 
T = u2 T/g 

1. Map of parameter space, showing where the coefficients in (2.25) change 
dynamics of wave evolution is different in each region. 

sign. The 

wave packet is local, it  is appropriate to require that A vanishes as c2 + q2+ a. As 
discussed above, the appropriate boundary conditions for 0 depend on the sign of a. 

In the deep water limit, (2 .23)  reduces to 

where 

(do s + i ? + 2 P  
XW = - 4~ (1 - 2i?) (1 + i?)' 

The appropriate boundary conditions for localized initial data are that A vanishes as 

The character of the solution of (2 .23)  depends fundamentally on the signs of the 
coefficients in the equations. Figure 1 is a map of parameter space, showing where 
these signs change. The figure is that of Djordjevic & Redekopp (1977))  who used it 
to explain the various regions of stability/instability of the Stokes wave. Each 
boundary line corresponds to a simple zero of a coefficient, as shown, except for the 
two curves bounding region F .  These two curves denote singularities of v. In  a neigh- 
bourhood of each of these two curves, phenomena occur on a shorter time scale than 
the 0(c2) scale required elsewhere; cf. Djordjevic & Redekopp (1977) .  

If we take the long wave limit, kh-+O, of (2 .23)  but keeping E << (kh)Z, we find 
equations which are of IST-type. We discuss this further in Q 5. Alternatively, the 
long wave limit in which E = O((kh)2) ,  where ( 2 . 1 i )  applies, corresponds to the lower 
left-hand corner of this figure (kh+ 0, i? + 0, $ fixed). The only parameter that changes 
sign in this limit is (i-p), which is positive in region A ,  and negative in region B. 

p+ q+a. 
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The uniformity of the limits kh -+ 0, e -+ 0 has been discussed by Ursell (1963), Hasi- 
mot0 & Ono (1972) and Freeman & Davey (1975). 

2.3. Conservation laws 

Our final objective in this section is to give a simple physical interpretation for an 
infinite set of conservation laws. It is well known that the equations of water waves 
conserve mass, horizontal momentum and energy. If we interpret ' mass' as the mass 
associated with the wave, etc. then these conserved quantities may be represented as 
integrals, In  one dimension (which is sufficient for the purpose of this discussion) 

M = p  [ax (mass); (2.26) 
we have : s 

(energy). 

K.E. = E j J '  IV$I2dzdx 

P.E. = e g J [ 2 d z  2 

2 - h  

(2.27) 

(2.28) 

E = K.E.+P.E. 

On the other hand, problems that have been solved exactly by IST possess an 
infinite set of conservation laws. For example, the first few quantities conserved by 
(1.2) are 

I Il = /IAIzdx, 

I I2 = J ( A  "A, - A,* A ax,  (2.29) 

There has been some speculation about the proper physical interpretation of this 
infinite set of conserved quantities. We offer here a very simple explanation. We have 
seen that (1.1)-(1.4) all are obtained via expansions in wave amplitude, 8. From this 
viewpoint, one might also expand (for example) the expression for the mass of the wave 
in powers of 8, to obtain a series of the form 

W 

M = px:snCn. (2.30) 
1 

Because M is constant in time, i t  follows that each coefficient, C,, is also constant. 
Because one generates the complete series for 9, 5 through O ( 8 )  in deriving (1.4), 

it is then straightforward to compute the series in (2.30) to this order. In  (2.17), any 
terms involving exp (Z'B) can be- shown to contribute only 
integration bj7 parts: 

1 G e i e d x ,  
ik s ax 

c l1(x l ,  t,, tz) eis dx = -- s 
at higher order, using 
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This process can be repeated as many times as <,, can be differentiated. The result of 
explicit computation is M = €al IL + e2a2 I, + O(e3),)  

m, = e2b2 I2 + O(s3), 
(2.31) 

I3 enters a t  O(e3) .  The coefficients (ai, bi ,  ci) are unimportant for our purpose. The 
momentum starts a t  higher order because it is referred to a co-ordinate system 
travelling with the group velocity of the wave. The identity of the last two series is a 
statement of the equipartition of the averaged energy, to this order. It is not true that 
I,, I, and I3 represent respectively the mass, momentum and energy of the water 
waves. (Similarly, the first three conserved quantities for KdV are not respectively 
the leading terms of the expansions of the mass, momentum and energy of the water 
waves.) 

3. Stability of solitons 

respect to transverse perturbations. 
The primary purpose of this section is to discuss the stability of solitons with 

3.1. The KdV limit 

Let us first consider the long wave problem, and (2.11). The one-dimensional limit, 
a jar  = 0, yields KdV. Here initial data on compact support evolve into a finite 
number of solitons, ordered by amplitude, followed by decaying oscillations that can 
be described in terms of a modulated similarity solution. The decay rate of the 
oscillations is not uniform in space, but it is of algebraic order (Ablowitz & Segur 
1 9 7 7 ~ ) .  The solitons are (theoretical) waves of permanent form when separated 
spatially from other waves. They represent water waves that decay only due to 
viscous effects. A KdV soliton is shown in figure 2a.  Both the solitons and the decaying 
oscillations have been observed experimentally (Hammack & Segur 1974, 1978). 

Kadomtsev & Petviashvili (1970) analysed the stability of a KdV soliton with 
respect to long transverse perturbations in (2.11). They found that the soliton is 
unstable with respect to such perturbations when (2.10) fails (i.e. in the lower left 
corner of region B in figure 1). The usual situation is region A ,  where (2.10) applies. 
Here they did not find that the soliton is unstable. 

In  region B, where the solitons are unstable, the KdV theory is of limited value. 
Here the solitons cannot represent asymptotic states, as they did in the one-dimen- 
sional problem. Thus, the question arises as to whether (2.11) has any other special 
solutions that might act as asymptotic states when the solitons are unstable. The 
answer is not known definitively a t  this time, but the work by Novikovt and Ablowitz 
& Satsuma (1978) is suggestive. In  region B, but not in region A ,  (2.11) possesses 
‘lump’ solutions. Lumps share many of the important properties of solitons: 

(i) Each is a permanent wave whose speed, relative to the linearized speed, ( g h ) l ,  
can be made proportional to its amplitude. 

t Lecture by S. P. Novikov for V. E. Zakharov on work by L. A. Bordag, A. R. Its, S.  V. 
Manulcov, V. B. Matreev and V. E. Zakharov in Rome, June 1977. 
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I' 

1 Y 
6 

FIGURE 2 (a). KdV soliton, as seen in two space dimensions at  a fixed time; rca = &- in (3.1), 
with CT = - 1.  (b)  Lump solution of (3.2) as seen in two dimensions at a fixed time; p = 0, p2 = *, 
c=-1 .  

(ii) Solitons are localized waves, with exponential tails in one dimension; lumps 
are localized waves, with algebraic tails, in two dimensions. 

(iii) Two solitons regain their original amplitudes and speeds after a collision; the 
final effect of the collision is a phase shift of each soliton. Two lumps regain their 
original amplitudes and speeds after a collision, and suffer no phase shift. 
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(iv) Explicit formulae are available for N solitons, and for N lumps. The formulae 
for the one soliton and one lump solutions of (1.3), with u = - 1, are: 

(soliton) ; 

a2 

dx2 
u = -12-1n(l+exp(-2~~’)) 

X‘ = X + 4K2t 

(lump). (3.2) 

a 2  

a22 
u = - 12--ln((~’+py’)~+ ( q ~ ’ ) ~ +  3/q2} 

2‘ = x+ (p%+qZ)t 

y’ = y- 2pt 

These two solutions are drawn in figure 2 for a particular choice of the constants. 
(The aoliton is anegative wave in region 3, as shown. In  region A ,  solitons are positive.) 

These stability results suggest that, whereas the one-dimensional KdV solution may 
play an important role in (1.3) with = + 1 (region A ) ,  no such situation is envisaged 
when u = - 1 (region B). 

3.2. The nonlinear Sehrodinger limit 

Next, we consider the nonlinear Schrodinger equation (2.23). Observe that (2.23) 
admits one-dimensional solitons travelling at almost any acute angle relative to the 
group velocity of the packet. The extreme cases are found by setting either a/@ = 0 
or a/ac = 0. If a/Q = 0, the second equation in (2.23) can be integrated once, and the 
system reduces to 

iA,+hAg = vJAJ2A,  

where v = x-xl/3/a,  and the coefficients A, a, p, x, xi are defined in (2.26). (Through- 
out this discussion, it should be borne in mind that the amplitude A represents the 
envelope of a train of plane waves.) Initial data can be created experimentally by 
modulating (in time) the stroke of an oscillating paddle a t  the end of a one-dimensional 
wave tank. If hv > 0, as it is in regions A ,  B and E,  of figure 1, there are no solitons. 
The initial data evolve into a field of decaying oscillations that we shall refer to as 
‘radiation’. This radiation can be described in terms of a modulated similarity 
solution, and it decays as 7-4 (Segur & Ablowitz 1976). In regions C, D and P, hv < 0, 
and the same initial data now produce a finite set of enuelope solitons in addition to 
the radiation. [For appropriate initial data, multi-soliton states are also possible 
(Ablowitz et al. 1974).] The one-soliton solution of (3.3) is 

A = aJ2h/v14sech(a(<-2b7)}exp(ibt+ih(a2- b2)7).  (3.4) 

The constant b in (3.4) represents an O(e)  correction to the basic wavenumber, k; 
without loss of generality we take b = 0. It is evident from (3.4) that the amplitude 
of the envelope soliton is of permanent form, and represents a physical wave that 
decays only due to viscous effects. Figure 3 shows the experimental measurements of 
such a wave, and we have superposed on the measurements the soliton solution with 
the same peak amplitude. [This experiment was conducted by Professor J. L.Hammack 
while at the University of Florida, and we are grateful to him for allowing us to use 
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(a) 

0.12 

t /I 

I- 
t -0.12 

\ 

\ 

I/ / 

FIGURE 3. Measured surface displacement, showing evolution of envelope soliton at two down- 
stream locations; h = 1 m, kh = 4.0, o = 1 Hz, -, measured history of surface 
displacement; - - -, theoretical envelope shape; 

= 1.0 x 

K( = msech (z), 

z = [cz~/o]  ( ~ / 8 h )  (0, t - Z) ; 
(a) 6 m downstream of wave maker, Ka = 0.132. (b)  30 m downstream of wave maker, ~a = 0.1 16. 
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his unpublished data.] It is clear from this comparison that, at  least in some aspects, 
the model represented by (3.3) is remarkably accurate. For more detailed comparisons, 
see Yuen & Lake (1975) or Hammack (to be published). 

At the other extreme, if a / a t  = 0 in (2.23), the system reduces to 

which is mathematically equivalent to (3.3) but represents a very different situation 
physically. Here wave crests move in the x (or [) direction, but they are modulated 
in the r/ direction. These modulations can move only in the rj direction. To our know- 
ledge, this configuration has not been explored experimentally in water waves, 
although it is common in nonlinear optics, where A,, represents diffraction of the 
light. In  optics, initial data is produced experimentally with a diffraction grating, and 
the solution of (3.5) provides a nonlinear description of Fraunhofer diffraction (cf. 
Manakov 1974). Solitons exist where x < 0 (since p 2 0 )  in regions B, C and F. To 
distinguish them from the soliton solutions of (3.3), we will refer to the solitons in 
(3.3) as 'envelope solitons', and the solitons in (3.5) as 'waveguides'. 

Between these two extremes, a/arj = 0 and a / a t  = 0, is a one-parameter family of 
other one-dimensional restrictions of (2.23) corresponding to one-dimensional waves (of 
the envelope) travelling at  various angles relative to the group velocity of the carrier 
wave. Each of these one-dimensional problems is governed by an equation of the form 
(1 .2), except at  one angle that corresponds to crossing from region B to F,  and another 
that corresponds to crossing from F to D. 

Again, the question arises of the physical relevance of the one-dimensional soliton 
in the two-dimensional problem. For the nonlinear Schrodinger equation, (2.23), the 
answer seems to be that except for specially contrived one-dimensional geometries 
(like laboratory wave tanks), they are unlikely to persist. We show next that every 
one-dimensional soliton solution of (2.23), envelope soliton or waveguide, is unstable 
with respect to a long-wave transverse perturbation. Apparently, this instability has 
not been observed in wave tanks only because the tanks are too narrow to admit the 
long-wave perturbations required. The instability was discovered first by Zakharov & 
Rubenchik (1974) for (2.25). Our analysis is a generalization of theirs to the case of 
finite depth. 

Consider first the envelope solitons, which are solutions of (3.3) and can exist in 
regions C, D and F in figure 1. As remarked above, it is sufficient to demonstrate the 
instability of the stationary soliton, 

I A = exp (iha27) $([), 

@t = -p/a$"t), 
where $(c) is real and satisfies 

- + ha2 + ~ $ 3  = 0. 

Perturbations about this soliton can be put in the form 

A = exp(iha27) [$+u+iv], 1 

where u, v, and w are real, 

and 
JuJ,  1.1 < $, 
u, v, w N exp ( i p ~  & iQ7). 

IwI < @, 
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FIQURE 4. Stationary waveguide, as seen in time at a fixed location. In  ( 3 4 ,  p = 2, x = - 4 and 
Re ( A )  = 2 sech 21 cos 87 is plotted. The displacement of the free surface, ~ f ; ,  is similar. 

The question of stability now comes down to determining whether R2 is positive. 
Substituting (3.8) into (2.23), linearizing and eliminating v yields 

awg6 = p 2  [ "J' O0 ($u) dx + w] , 
" I  

where Lo and L, are the self-adjoint operators defined by 

a2 
Lo = -A- + ha2 + qk2 ,  

L, = -A-+Aa2+3v@2. 
a2 

at2 
In  the short-wave limit (p2-+co), (3.9) reduces to 

(3.9) 

(3.10) 

Clearly Q2 is positive in this limit, and short waves are not unstable. Indeed, if they 
were unstable, it  would be difficult to observe envelope solitons even in narrow wave 
tanks. 

In order to analyse the long wave limit ( p 2  -+ 0), we expand the unknowns in (3.9) as 

I u N uo+p'2u,, 

w - P2W1, 
R2 N p 2 q .  

Lo L, uo = 0. 

Then to leading order, (3.9) becomes 

24 

(3.11) 

(3.12) 
F L M  92 
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In order to solve (3.12), we define certain odd ( - ) and even ( + ) functions of 5: 
M .  J .  Ablowitz and H .  Segur 

v, = -5@/2h, vof = 4. (3.13) uo+ = --- 1 a$ 
h aa2’ u, = @p 

The following relations can be obtained from (3.7): 

(3.14) 

(3.15) 

It follows that u, and u$ both satisfy (3.12), and that vo and v$ satisfy the adjoint 
equation, 

In each case, there are two other solutions that do not vanish as 161 +a. We will 
also need certain scalar products of these functions. Using the notation 

I Lou$ = 0, 

Lou, = u;, 
L,u, = 0, 

L,u$ = vo’. 

L,Lovo = 0. 

one computes 

where 

At O(p2),  (3.9) reduces to  

1 d I  I 
(v,+,u$) = --- 

h da2’ 

I (v$,u,) = (v,,uo+) = 0; 

“(w1)g5 = “J“ ($rug) d z .  
“ 6  

(3.16) 

( 3 . 1 7 ~ )  

(3.17 b )  

For u1 to decay as (51 +a, it  is necessary that the non-homogeneous terms in (3.17) 
be orthogonal to the decaying solutions of the homogeneous adjoint equation (3.15). 
Because the equations are linear, it  is sufficient to consider the odd and even modes 
separately. Thus, if uo in (3.17) is uo+) we multiply ( 3 . 1 7 ~ )  by v$, integrate over 6, and 
use integration by parts to obtain 

or (3.1%) 
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For the odd mode, u;, we multiply ( 3 . 1 7 ~ )  by v; and use (3.17b). The result is 

707 

(3.19) 

The question of stability of envelope solitons depends only on the sign of A (the 
other factors in (3.18) and (3.19) are intrinsically positive). Using R2 N p2(R'$), we 
summarize the result as follows. 

(i) In region D,  where h < 0, an envelope soliton with amplitude a is unstable with 
respect to long disturbances that are antisymmetric ( -  ) in 5. The growth rate (iR) 
of the disturbance with wavenumber p is found from 

(3.20) 

In the deep water limit, this simplifies to 

p = - a  3P 2 a 2 PI4 + 0(P4), (3.21) 

as found by Zakharov & Rubenchik (1974). Thus, for an inviscid fluid, the effect of 
finite depth is to enhance the growth rate of the instability. Zakharov & Rubenchik 
found the O(p4) correction to (3.21), and argued qualitatively that the most unstable 

PP2 = 0(l+J2) ( 3 . 2 2 ~ )  wave satisfies 

and that the maximum growth rate is on the order of 

(R2( = O((h(a2). (3.22b) 

Moreover, they noted that the growth of a mode that is antisymmetric in 5 and 
sinusoidal in 7 tends to bend the wave crest, producing a 'snake' effect; i.e. the crest 
of the perturbed wave oscillates back and forth in the t, 7 plane about its un- 
perturbed position. Recent numerical computations in Saffman & Yuen (1978) have 
made (3.22) more precise. 

(ii) In regions C and F ,  where h > 0, an envelope soliton with amplitude a is unstable 
with respect to long symmetric ( + ) disturbances. The growth rate of the disturbances 
with wavenumber p is found from 

~2 = - 2p2a2~P + o(p4) ,  (3.23) 

and this result also holds in the deep water limit. Again, qualitative considerations 
yield (3.22b). Growth of a symmetric mode tends to modulate the wave amplitude 
periodically in 7. 

Analysis of the stability of waveguides (in regions B, C and F )  follows similar lines, 
and it is necessary only to indicate the main points of the analysis. A stationary 
waveguide has the form 

A = exp (ipa27) $(7), (3.24) 

@ = 0, 

where $ is real and -p$,,,, +pa2$ - XI,P = 0. 
24-2 
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Perturbations take the form 
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A = exp (i,ua27) [$ + u + iv], 

CD = -Jtmwdz. 

The linearized equations for u and w, derived from ( 2 . 2 5 ) ,  are 

i 
n2u = (Lo + Ap2) (L, + Ap2) u + x,(L, + Ap2) $to, 

WT7 = p2[2P@u + awl, 
a 2  

a7 
where L, = - ,u -2 + pa2 i- x $ ~ ,  

(3 .25)  

(3 .26)  

These equations are very similar to those in (3 .9 )  and we simply state the final 
result. Throughout regions B, C and F ,  (A,p) are positive. Anywhere in these regions, 
a stationary waveguide with amplitude a is unstable with respect to long symmetric 
(in 7) disturbances. The growth rate (in) of the disturbance with wavenumber p (in () 
is found from (3 .23)  and qualitative considerations give (3 .22a ,  b )  with A, p inter- 
changed. 

We conclude this section by summarizing our results for the nonlinear Schrodinger 
equation, (2 .23) .  There are many one-dimensional limits, including (3 .3 )  and ( 3 . 5 ) .  
These two limits admit envelope solitons and waveguides, respectively, in various 
regions of figure I .  However, all possible solitons are unstable with respect to some 
long-wave transverse perturbation. This instability does not appear in experiments 
in one-dimensional wave tanks, provided the tank width is small in comparison with 
the soliton length, because the unstable modes are excluded by the geometry. If this 
constraint is removed, however, the instability should occur, and neither kind of 
soliton is a stable asymptotic state that can be achieved from initial data in (2 .23) .  

4. Focusing 
In  one-dimensional problems, like (1.2), the most dramatic nonlinear effect is that  

smooth initial data can ‘focus’ into a localized soliton, or into a set of solitons, which 
then persist forever. In  this section, we show that focusing is even more dramatic in 
two dimensions and that a solution of (2 .23)  that evolves from smooth initial data can 
become singular a t  a point in space after a finite time. This is known as the ‘self- 
focusing singularity’, or simply as ‘focusing’. In  such a case the water wave equations 
must be re-examined in the neighbourhood of the focus. 

To our knowledge, the phenomenon of focusing has not yet been observed as such 
in water waves, although it has been known for some time in nonlinear optics (e.g. 
Vlasov, Petrishchev & Talanov 1974). Some of the analysis discussed here uses the 
ideas presented by Zakharov & Synakh (1976) who studied what amounts to the 
two-dimensional version of (1 .2 )  [i.e. (2 .25) ]  in the context of the optics problem. 
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4.1. Necessity of ,focusing 

Our first objective is to identify circumstances under which the solution of (2.23) 
must focus in a finite time. Consider any point in region F of figure 1, where 

(h,P, (--A!), X I ,  a,P) 

are all positive; i.e. consider capillary-type waves in sufficiently deep water. Consider 
initial data for (2.23) which are infinitely differentiable and which decay rapidly as 
( t2+q2)-+0o; e.g. A(& 7 , O )  might have compact support. If a solution of (2.23) exists 
and vanishes rapidly enough as (E;2 + q2) + co, then the following integrals are constants 
of the motion: 

(4.1 a) 

(4.1b) 

( 4 . 1 ~ )  

Each bracket, { 1, in I, is positive definite, and the second bracket vanishes in the 
linear limit of (2.23). Clearly I4 < 0 is possible (e.g. if the initial data has sufficiently 
large amplitude). 

It also follows from (2.23) that 

As noted in 3 2, one may interpret 1; as the mass of the wave (to leading order in 8). 
Then the integral in (4.2) may be interpreted as the moment of inertia, and (4.2) is an 
example of the virial theorem (e.g. Chandrasekhar 1961, p. 581). Equation (4.2) is 
easily integrated, and we see that, if la < 0, then the moment of inertia vanishes at  a 
finite time. Clearly, no global solution exists after this time, because the (positive 
definite) moment of inertia would become negative! Since the mass of the wave is 
conserved, (4.2) suggests that prior to this time the radius of gyration is vanishing as 
the mass accumulates at  a single point. The rapid development of this singularity is 
what we mean by focusing. 

Before examining the nature of the singularity that develops, let us consider the 
implications of this argument outside of region F .  In regions B and C ,  where 01 < 0, 
global integrals involving @ are generally unbounded (cf. fi 2) and no global informa- 
tion about the solution is available by this approach. Whether focusing exists in these 
regions is open. In region E there is no focusing in the deep water limit, since the 
parameters are such that I4 > 0. In  arbitrary depth the question of focusing is still 
open. 

In regions A and D, the integral in (4.2) is not of definite sign, and provides no 
contradiction. Both because of the breakdown of this argument and because the type 
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of instability of solitons is different than in region F ,  we expect that if singularities 
develop in these regions, they will be qualitatively different from those of the self- 
focusing type. 

4.2. Nature of the singularity 
Next, we examine the possible behaviour of the singularity that develops a t  the focus. 
Zakharov & Synakh (1976) studied the radially symmetric case of (2.25). They 
investigated this equation both by numerical computations and an approximate 
analytic procedure. From these they concluded that as r+r0 (ro being the time of 
focus) the wave amplitude grows as (rO-r)-P, p = 3. In this section we show that 
there are a number of quasi-self-similar solutions to the generalized nonlinear 
Schrodinger equation, (1.4), including one withp = 3 ,  but we have found no convincing 
argument that this local behaviour is necessarily of the p = 8 type. 

For convenience, we consider the scaled form of (2.23), namely (1.4). In  region F 
of figure 1, where focusing can occur, CT~ = + 1, cr2 = - 1.  

Let A = B exp (iY) in (1  .a), with B, Y real and find: 

W 2 ) t  + (up, B2), + (Y, B2), = 0, (4.3a) 

-YtB+B,,+B,,-B(Y~+Y~) = -B3+(DzB, (4.3b) 

(4.3c) 

We seek quasi-self-similar solutions sf (4.3) in the neighbourhood of the point of focus 
in the form 

( 4 . 4 4  

a@= + a,, = - b(B2),. 

1 
B N -R(% jj) + Ro(Z, jj, t ) ,  f 

f 
1 

@ - - Q(% 5)  + QO(% 5, t ) ,  (4.4b) 

where E = x/f, = y/ f, f ( t )  = (to - t ) p ,  so that f -+ 0 as t -+ to. This expansion is asymp- 
totic near the focus provided R, < R, Qo < Q in this region. Zakharov & Synakh (1976) 
also assumed 

but this assumption seems to be unnecessary. In any case, the dominant terms in 
( 4 . 3 ~ )  as t + to are 

(4.6) 

A special solution of (4.6) is 

(Y, R2 - +ER”f), + (Y, R2 - iTjR2f’), = 0. 

YL = -@f I + GI@, t)/R2, 

Y, = Jjjf’ + G2(Z, t)/R2. (4.7) 

Taking GI = G, = 0 (for which some motivation is provided below) yields 

Y = & ff ’(it2 + 5 2 )  + g( t ) ,  

RSZ + RGy + R3 - RQz - g’(t) f 2R - & f sf”(Z2 + 3,) R N 0, 

(4.8) 

and with this we have from (4.3)-(4.4), as f + 0, 

( 4 . 9 4  

~ Q S Z  + Qcg + b(R2), N 0. (4.9b) 
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There are various possibilities; e.g. 
(4 f ” f 3  < 1, q’ = K / f 2 ;  

( b )  f ” f 3  = o(l), 9’ = K / f 2 ;  

others are obtained similarly. Case (a)  implies that to leading order (4.9) reduces to 

RG+RR,,+R’-RQ,-KR = 0, ( 4 . 1 0 ~ )  

a&,, + QR,@ = - b(R2),. (4.10 b )  

If one also assumes ( 4 4 ,  then (a)  becomes f 3f” = O( f ), from which it follows that 
p = 9.  However, the spatial structure defined by (4.10) does not depend on ( 4 4 ,  or 
onp = Q. In the deep water case with radial symmetry (see Zakharov & Synakh 1976), 
b = Q = 0, Fa = Za + p2, and ( 4 . 1 0 ~ )  reduces to 

(4.11) 

Chiao, Garmire & Townes (1964) first studied (4.11) as a model of cylindrical optical 
beams, and showed that its bounded solutions decay exponentially for large P. The 
equation also arises as an exact reduction of (1.4) if we take 

1 
r 

Rrr+zRF+R3-~R = 0.  

Q = b = O ,  
P = h(z2+y2)*, 

A = AR(P) exp (id%’). 
(4.12) 

The fact that (4.11) is exact has important consequences, which we discuss in 5 .  
In case (b ) ,  p = 4 and the solution is exactly self-similar. Here (4.8)-(4.9) yield 

R,, + Rpg + R3 - RQ, - K R  + &(Zz + ij2) R = 0,  

a&, + QGR, = - b ( R 2 ) ~ ,  

Y = -*(- z2 + g2) - K In (to - t )  +Yo. 

(4.13 a)  

(4.13 b )  

( 4 . 1 3 ~ )  

In the radially symmetric case, ( 4 . 1 3 ~ )  becomes 

(4.14) 
1 
r 

R++=Rr+(&P2-~)R+R3 = 0, 

and for large P all bounded solutions decay as (?)-I. We also note that a somewhat 
more general equation than (4.14), obtained by retaining C in (4.7), can be found in 
the symmetric case: 

( 4 . 1 5 ~ )  

(4.15b) 

However, one can show from ( 4 . 1 5 ~ )  that R has a finite value at the origin only if 
C = 0. This result provides some justification for neglecting G in (4.7). 

Using any of these similarity solutions, going back to the full water wave equations 
and rescaling, we find that the focusing instability produces a finite [i.e. O( l)] region 
of space in which the wave amplitudes are potentially large enough to break [0( l)]. 
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Next, we present an argument which suggests that the self- focusing singularity 
cannot be of the p = 4 type, as we have described it here. For convenience, we con- 
sider the case of radial symmetry. The expansion in (4.4) is valid in a region near the 
focus where the first terms are dominant. If we assume that this ‘inner solution’ 
matches to  an outer solution that is O( l) ,  then the inner expansion breaks down where 

(4.16) 

But for large F, R decays as ( F ) - l ,  so that ( l / f )R decays as r-1; i.e. there is no time- 
dependence. It follows that (4.16) defines a boundary for the focal region, denoted by 
r = O(L), where L is time-independent. The mass within this region is proportional to 

1 
-R(T) = O(1). f 

(4.17) 

and (because R - 7-l) this grows logarithmically as t+ t , .  But the total mass is finite, 
and this is a contradiction. 

In  case (a )  R(T) decays exponentially and no such contradiction appears. Moreover, 
if the nonlinearity in (1.4) were slightly stronger, no contradiction appears in the 
purely self-similar case. To be precise, if the nonlinear term in (1.4) were replaced with 
J A  I2aA, a > 1, then the radially symmetric similarity solution becomes 

(4.18) 

In  this case the radial decay is B(?) - ( F ) - ’ l a ,  and again L is finite. However, in this 
situation, when a > 1 the mass remains finite as 7 -+ 70, and the pure similarity solution 
is a likely candidate for describing the dynamics of the focus regime. 

A = (to - t)-1/2“B(T), F = r / ( to  - t )4 .  

Finally, we remark that a natural generalization of (1.4) is: 

iA, + g1 A,, + A,, + ~2 A ,  = g33)A 1 %A + @, A , ( 4 . 1 9 ~ )  

a, @,, + + a2 = - b( I A I 2a)z, (4.19b) 

where the ai = 5 1 (i = 1,2 ,3)  and a,, a2, b are constant. The spherically symmetric 
limit is obtained by taking b = CD = 0, rl = g2 = + 1 .  Since the spherically symmetric 
equation has wide applicability, and (1.4) is itself physically relevant, we expect that 
(4.23) will also arise in physical problems. 

5. Other solutions of the nonlinear Schrodinger equation 

may play a role in its asymptotic ( r  -+ co) solution. 
The purpose of this section is to identify other features of the solution of (2.23) that 

5.1. Complete integrability 

Perhaps the fundamental question to answer about (2.23) is whether i t  is completely 
integrable; i.e. whether it can be solved exactly by relating it to an appropriate linear 
scattering problem. The question is natural in light of the fact that the one-dimensional 
problem can be solved in this way. 

Consider first the long-wave limit of (2.23), subject to the constraint in (2.14). Here, 
(2.23) becomes (after resealing of variables) 

(5.1) 
iA,-g,Ag+AT,,  = CT,~A~’A+ACD;, 

g , ~ ~ ~ + @ ~ , ,  = - 2 ( 1 ~ ( ~ ) ~ ,  rl = sgn(4-P). 
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This system is of I.S.T. type (Ablowitz & Haberman 1975; Anker & Freeman 1978). 
Special 37 soliton solutions can be constructed either by a direct (Hirota type) method 
or via the Zakharov-Shabat approach (Anker & Freeman 1978). 

The situation seems to be much different in the deep water limit. Here we have 
already seen that (4.11) is an exact reduction of (2.23) to an ordinary differential 
equation; i.e. every solution of (4.11) provides an exact solution of (2.23) in this limit. 
Let us consider those partial differential equations (PDE) which have been solved 
exactly by IST methods. We have found that every reduction of one of these PDE’s 
to an ordinary differential equation (ODE) results (perhaps after a transformation of 
dependent variables) in an ODE without moveable critical points (Ablowitz & Segur 
19773; Ablowitz, Ramani & Segur 1978). 

We expect that if (2.23) can be solved by some IST, then (4.11) should have no 
moveable critical points. But Ince (1944, especially p. 344) provides a complete list 
of all such second-order equations; (4.11) is not on this list and cannot be transformed 
to any equation that is present. Therefore, the solution of (4.1 1)  has moveable critical 
points. Moreover, one can show that (4.1 1 )  has logarithmic singularities in addition 
to poles. On this basis, we conjecture that (2.23) cannot be solved exactly by IST 
in the deep-water limit. 

Although (2.23) can be solved by IST in the shallow-water limit (i.e. lower-left 
corner of figure l),  it apparently cannot be solved in this way in the deep-water limit. 
Wherever IST methods fail, one is forced to piece together special solutions of the 
problem to describe the general solution. 

5.2. Decaying oscillations 

The special solutions discussed so far in this paper have been localized: either solitons 
(or soliton-like) or self-focusing singular solutions. However, in the one-dimensional 
limit of (2.23)) solitons make up only part of the asymptotic solution of the initial 
value problem. That part of the solution associated with the continuous spectrum 
spreads over large regions of space, while it decays as t-4.  In  particular, an exact 
solution of (1.2) is 

where A and # are real constants; the solution of (1.2) associated with the continuous 
spectrum tends to a slowly varying modulation of this, where A and # depend on 
(z / t )  (Segur & Ablowitz 1976; Segur 1976). 

A = t-*A exp {i(x2/4t + (rA2 In t + #)}, (5.2) 

In the two-dimensional problem, (1.4)) there is an analogous exact solution: 

(5.3) 

@ = - E(t) x + C ( t )  y + D(t) .  

Similar solutions in the deep water limit of (2.23) were found by Talanov (1967). On 
the basis of the one-dimensional theory, we anticipate that the part of the solution of 
(1.4) that decays in time can be described in terms of a slowly varying modulation of 
this exact solution. 

Moreover, this behaviour would be consistent with the results of Lin and Strauss 
(to appear) who studied the three-dimensional problem 

i u t - A ~ + l ~ l 2 u  = 0, (5.4) 
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where A is the Laplacian in three dimensions. They found that the solution exists for 
all time and decays as t-9. The appropriate similarity solution here is 

u = t-SA exp { - i [ ( x 2  + y2 + z2) /4 t  + A2/2t2 + $I}. (5.5) 

Without solitons or focusing, the decay rate of the solution of t,he nonlinear Schrodinger 
equation seems to be 

u = O(t-4.) (5.6) 

where n is the number of spatial dimensions. This decay rate is the same as in the 
linearized problem. 

We are grateful to L. G. Redekopp and to J. L. Hammack for lending us the material 
in figures 1 and 3, respectively, and to Martin Kruskal for useful comments. This 
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